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 24 

Abstract 25 

Satellite multisensor precipitation products (SMPPs) have a variety of potential uses, but 26 

suffer from relatively poor accuracy due to systematic biases and random errors in 27 

precipitation occurrence and magnitude. We use the Censored Shifted Gamma Distribution 28 

(CSGD) to characterize the Tropical Rainfall Measurement Mission Multi-Satellite 29 

Precipitation Analysis (TMPA), a commonly-used SMPP, and to compare it against the 30 

rain gage-based North American Land Data Assimilation System Phase 2 (NLDAS-2) 31 

reference precipitation dataset across the conterminous United States. The CSGD describes 32 

both the occurrence and the magnitude of precipitation. Climatological CSGD 33 

characterization reveals significant regional differences between TMPA and NLDAS-2 in 34 

terms of magnitude and probability of occurrence. We also use a flexible CSGD-based 35 

error modeling framework to quantify errors in TMPA relative to NLDAS-2. The 36 

framework can model conditional bias as either a linear or nonlinear function of satellite 37 

precipitation rate and can produce a “conditional CSGD” of describing the distribution of 38 

“true” precipitation based on a satellite observation. The framework is also used to “merge” 39 

TMPA with atmospheric variables from Modern-Era Retrospective analysis for Research 40 

and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of 41 

MERRA-2, this merging offers robust reductions in random error due to the better 42 

performance of numerical models in resolving stratiform precipitation. Improvements in 43 

the near-realtime version of TMPA are relatively greater than for the higher-latency 44 

research version. 45 
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1. Introduction 46 

Precipitation data is critical in a variety of subjects including climate studies, meteorology, 47 

hydrology, and natural hazards. While precipitation is relatively easy to measure at a single 48 

point using a rain gage, measurement over large regions at high spatial and temporal 49 

resolution is a major challenge. A “constellation” of earth-observing satellite missions, 50 

including the now-defunct Tropical Rainfall Measuring Mission (TRMM) and the follow-51 

on Global Precipitation Measurement (GPM) mission, co-led by the National Aeronautics 52 

and Space Administration (NASA) and the Japan Aerospace Exploration Agency. These 53 

satellites provide a mix of direct measurements of precipitation and related processes using 54 

active radar and indirect measurements using passive microwave (PMW), and infrared 55 

(IR). Satellite multisensor precipitation products (SMPPs) merge these various 56 

observations to create near-global precipitation records that approach two decades in 57 

length. Examples include the 3-hourly, 0.25° Tropical Rainfall Measurement Mission 58 

Multi-Satellite Precipitation Analysis (TRMM TMPA; Huffman et al., 2010, 2007); the 59 

30-minute, 8 km Climate Prediction Center (CPC) Morphing Technique (CMORPH; Joyce 60 

et al., 2004); and the hourly, 4 km Precipitation Estimation from Remote Sensing 61 

Information using Artificial Neural Networks (PERSIANN; Sorooshian et al., 2000). Most 62 

SMPPs are available in near-realtime (with latency on the order of several hours) and some 63 

have non-realtime variants that utilize ground-based rain gage information for bias 64 

correction. Launched in 2014, the GPM mission builds on TRMM’s legacy with an 65 

advanced active and passive instrument package. NASA’s 30-minute, 0.1° Integrated 66 

Multi-satellitE Retrievals for GPM (IMERG; Huffman et al., 2014) dataset builds on more 67 
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than a decade of experience with SMPPs, combining the strengths of TMPA, CMORPH, 68 

and PERSIANN and incorporating additional improvements.  69 

 70 

Despite widespread interest in SMPPs, these datasets often exhibit considerable errors, 71 

both systematic (i.e. bias) and random, stemming from a variety of sources. Observation 72 

quality varies within the satellite constellation, with active radar being the most accurate, 73 

followed by PMW and IR. Sensor technology and resolution varies with age and mission. 74 

The current constellation of satellites provides a PMW observation for most locations on 75 

Earth approximately every three hours, while radar observations are much less frequent. 76 

Between PMW measurements, algorithms typically use spatiotemporal interpolation of 77 

PMW or “infilling” using lower-accuracy IR. PMW observations tend to be more accurate 78 

nearer the tropics and for convective than for stratiform storm systems (Ebert et al., 2007) 79 

and are influenced by the underlying land or water surface, and microwave emissions from 80 

snow or ice-covered ground can be difficult to distinguish from emissions due to ice scatter 81 

in precipitating clouds (Ferraro et al., 2013; Ringerud et al., 2014; Tian and Peters-Lidard, 82 

2007). IR and PMW instruments have difficulties with orographic precipitation systems 83 

due to their shallow nature (Shige et al., 2013) and high variability in microscale and 84 

macroscale dynamics (Anders et al., 2007). 85 

 86 

Given the potential usefulness of SMPPs, it is natural to want to characterize SMPP errors 87 

using an error model that compares SMPP against “ground truth,” i.e. more reliable 88 

reference data (typically rain gages or ground-based weather radar). Systematic error is 89 

usually heteroscedastic (i.e. depends on precipitation observation magnitude), a 90 



 5 

phenomena known as conditional bias (Ciach et al., 2000). Such errors tend to be 91 

multiplicative (Tian et al., 2013) with a magnitude that increases with precipitation 92 

observation intensity. Error models can be used to identify and thus remove systematic 93 

errors. They can also describe the statistical distribution of random errors, which can be 94 

understood as the residuals once the systematic error has been removed. Using this 95 

approach, individual random errors are irreducible without some sort of additional 96 

explanatory information.  97 

 98 

SMPP characterization efforts (e.g. AghaKouchak et al., 2011; Behrangi et al., 2011; Tian 99 

et al., 2009) often distinguish between three error “cases”: false alarms, in which the SMPP 100 

reports precipitation while the reference data does not; misses, in which the reference 101 

reports precipitation while the SMPP does not; and hits, in which both report precipitation, 102 

but not necessarily of the same magnitude. Most error models that have been developed in 103 

the context of precipitation estimation using ground-based radar (AghaKouchak et al., 104 

2010; Ciach et al., 2007; Germann et al., 2009) and SMPP (Gebremichael et al., 2011a; 105 

Sarachi et al., 2015; Yan and Gebremichael, 2009) have tended to focus on hit cases only.  106 

 107 

Several previous SMPP error models have considered false alarms, misses, and hits 108 

separately, and then recombine these separate descriptions to create an overall estimated 109 

distribution of true precipitation. For example, the Precipitation Uncertainties for Satellite 110 

Hydrology framework (PUSH) introduced by Maggioni et al. (2014) uses a Gamma 111 

distribution to describe the precipitation intensity associated with misses, exponential 112 

decay and linear regression models respectively to describe the probability and intensity 113 
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associated with false alarms, and a generalized linear model to generate a Gamma 114 

distribution of precipitation magnitude associated with hits. PUSH also uses a uniform 115 

distribution to describe possible trace precipitation associated with cases where neither the 116 

SMPP nor reference data report precipitation. For any zero or nonzero SMPP observation, 117 

a probability distribution can be generated by combining these cases. The two-dimensional 118 

Satellite Rainfall Error Model (SREM2D) introduced by (Hossain and Anagnostou, 2006) 119 

takes a somewhat similar approach, but incorporates spatial and temporal autocorrelation 120 

functions to construct ensembles of correlated precipitation fields.  121 

 122 

This study applies a new shifted gamma distribution (CSGD) methodology to characterize 123 

precipitation and create an SMPP error model that produces a “best guess” distribution of 124 

the true precipitation by considering hits, misses, and false alarms. The CSGD technique 125 

presented in this paper is arguably simpler than most, and comparison with the PUSH error 126 

model that suggests that this relative simplicity is advantageous. 127 

 128 

Previous precipitation error model studies have generally focused on relatively small 129 

geographic areas where spatial stationarity of rainfall and model parameters can be 130 

assumed; however, these approaches have not explored spatial variability in these 131 

parameters or in model performance. This study is one of the few, along with Maggioni et 132 

al. (2016), that applies an error model over a large region to better understand SMPP 133 

performance characteristics and how they are tied to physiographic and climatological 134 

features. 135 

 136 
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This study moves beyond the traditional notions of precipitation error modeling towards 137 

error correction by allowing the incorporation of additional information to reduce random 138 

errors. Previous researchers have suggested that topography and other land surface 139 

characteristics as well as other atmospheric variables such as humidity could help 140 

understand and, in principle, correct SMPPs (Gebregiorgis and Hossain, 2013; 141 

Gebremichael et al., 2011a). As far as we are aware, this study is the first to explore the 142 

potential benefit of incorporating atmospheric variables such as humidity and precipitation 143 

from numerical weather models (specifically, atmospheric reanalysis) in a satellite 144 

precipitation error model to reduce SMPP random errors. This is a promising approach 145 

since the complementary performances of numerically-simulated and remotely-sensed 146 

precipitation estimates provide the opportunity to produce merged datasets with smaller 147 

systematic and random errors. 148 

 149 

The SMPP, ground reference, and atmospheric reanalysis datasets utilized in this study are 150 

described in Section 2. The CSGD and the CSGD-based precipitation error modeling and 151 

correction frameworks are introduced in Section 3. Results for precipitation 152 

characterization and SMPP error modeling are provided in Section 4. Summary and closing 153 

discussion follow in Section 5. 154 

2. Data  155 

This study focuses on daily-scale, 0.25° (approximately 25 km) precipitation over the 156 

conterminous United States (CONUS; see Figure 1). This large geographic extent allows 157 

us to robustly demonstrate not only how the CSGD can be used to characterize precipitation 158 
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and how the CSGD-based error modeling framework can correct for biases and 159 

characterize remaining uncertainties, but also how these features vary with climatic and 160 

physiographic controls. 161 

 162 

We examine two variants of TMPA (also known as TRMM 3B42) Version 7.0. TMPA 163 

merges PMW, active radar, and IR observations from multiple satellites to create a near-164 

global (±50° latitude) rainfall dataset with 3-hourly, 0.25° resolution. The “research” 165 

version includes a monthly rain gage-based bias correction and is available approximately 166 

two months after realtime. In this study, analyses using this version cover 1998-2014. 167 

Several analyses consider TMPA-RT, which is available approximately 8 hours after 168 

realtime and only includes a gage-based climatology correction. Such near-realtime 169 

analyses cover 2000-2014, since the pre-2000 TRMM orbit precludes near-realtime 170 

analysis. “TMPA” is used to refer to the research version and “TMPA-RT” for the near-171 

realtime version. The TRMM satellite ceased operations in April 2015 but the TMPA 172 

product is continuing to be produced leveraging other satellites in the constellation. 173 

NASA’s recent IMERG SMPP was not used in this study, since at the time of writing it 174 

was only available for 2014 onward.  175 

 176 

We use the “File A” precipitation forcing from Phase 2 of NASA’s National Land Data 177 

Assimilation System (NLDAS-2; Xia et al., 2012b, 2012a) as the reference. NLDAS-2 178 

precipitation has hourly, 0.125° resolution, disaggregated from daily CPC-Unified gage 179 

analysis (Chen et al., 2008; Xie et al., 2007) and features a statistical topographic correction 180 

based on the PRISM climatology by Daly et al. (1994). NLDAS-2 was selected rather than 181 
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the Stage IV bias-corrected radar rainfall dataset that has been used in some SMPP 182 

validation studies (AghaKouchak et al., 2011; Qiao et al., 2014) since visual inspection of 183 

Stage IV revealed very poor performance in mountainous regions. We have aggregated 184 

NLDAS-2 from its hourly 0.125° resolution to the same daily 0.25° resolution as the TMPA 185 

data. Thus, the NLDAS-2 precipitation values used in this study are very similar, but not 186 

exactly identical, to CPC-Unified, which has been used in several previous SMPP error 187 

characterizations (Maggioni et al., 2016, 2014; Tian et al., 2013). The reader is referred to 188 

Ferguson and Mocko (2017) for a detailed explanation of the data sources utilized to create 189 

the NLDAS-2 precipitation forcing. 190 

 191 

Though there is likely overlap in terms of the rain gages used to create NLDAS-2 and those 192 

used to bias-correct the research version of TMPA, the CSGD-based framework does not 193 

require strict independence of SMPP and reference data. This study assumes that NLDAS-194 

2 is free of errors, which is of course never the case for any dataset, let alone a continental-195 

scale one such as NLDAS-2. Rain gage undercatch errors in gridded rain gage datasets can 196 

be substantial, particularly for snowfall and for extreme rainfall (Adam and Lettenmaier, 197 

2003). NLDAS-2 does not use a gage undercatch correction, and thus probably 198 

underestimates true precipitation. It should be noted that the monthly gridded rain gage 199 

data used to bias correct TMPA does use an undercatch correction. Thorough investigation 200 

of the role of gage undercatch errors in satellite precipitation validation is beyond the scope 201 

of this study. 202 

 203 
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We also present analyses that utilize surface precipitation rate and vertically integrated total 204 

precipitable water (TPW) from Version 2 of the Modern-Era Retrospective analysis for 205 

Research and Applications (MERRA-2; Bosilovich et al., 2015; Rienecker et al., 2011) 206 

from NASA. MERRA-2 is generated using an atmospheric model that assimilates a range 207 

of surface and atmospheric observations including satellite PMW. MERRA-2 outputs have 208 

hourly, 0.5° latitude by 0.625° longitude resolution. It is unnecessary to regrid the 209 

MERRA-2 datasets to the 0.25° resolution of TMPA for this study, but the same daily 210 

temporal resolution is used. Though MERRA-2 provides several surface-level precipitation 211 

outputs, including a version primarily based on rain gages, we use model internally-212 

generated precipitation to ensure greater independence from TMPA and NLDAS-2 and to 213 

illustrate the value of numerically-generated precipitation and other atmospheric variables 214 

for reducing SMPP errors. 215 

 216 

The precipitation datasets utilized in this study consider all seasons and precipitation 217 

phases (i.e. rain, snow, hail, etc.), represented in terms of depth of liquid water. 218 

Determination of precipitation phase is a challenge in gridded precipitation datasets, 219 

whether the underlying data come from rain gage networks, satellites, ground-based radar, 220 

or numerical models. 221 

 222 

We treat data prior to 2014 as the “training period,” i.e. used for model parameter 223 

estimation as well as error analysis. Data from 2014 is used as “validation,” to assess model 224 

robustness when used outside of the training period. Though this training period is much 225 
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longer than the validation period, this typifies many settings in which an error model might 226 

be used, since many reference datasets date at least as far back as most or all SMPPs.  227 

3. Methods 228 

3.1 The CSGD 229 

The two-parameter Gamma distribution has been used in precipitation modeling since at 230 

least Das (1955). Like precipitation itself, the Gamma distribution is left-bounded at zero, 231 

and can take many possible “shapes,” in terms of its density and cumulative distribution 232 

function (CDF). Generally, a precipitation process can be modeled in two steps using a 233 

total of three parameters. First, the probability of occurrence is modeled via a Bernoulli 234 

trial with the “success” parameter equal to the probability of precipitation (POP). Second, 235 

the nonzero precipitation magnitude is modeled via the two-parameter Gamma with shape 236 

parameter 𝑘 and scale parameter 𝜃 expressed using the distribution mean 𝜇 and standard 237 

deviation 𝜎 by 238 

𝑘 = &'

('
, 𝜃 = ('

&
                                                             (1) 239 

The CSGD is an alternative formulation presented in (Scheuerer and Hamill, 2015) in 240 

which the CDF is “shifted” left and subsequently left-censored at zero, meaning all 241 

negative values are replaced by zero. Thus, the density to the left of zero represents the 242 

probability of zero precipitation (1 − 𝑃𝑂𝑃), while the density to the right of zero represents 243 

the likelihood of a particular nonzero value. To achieve this, a “shift” parameter 𝛿, 𝛿 < 0 244 

is introduced such that, if 𝐹2,3 denotes the CDF of a gamma distribution, then the CDF of 245 

the CSGD model is defined by  246 
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F5,6,7 x = 	 F5,6 x − δ 	for	x ≥ 0
0	for	x < 0

	                                     (2) 247 

where x is rainfall depth. In this way, the CSGD eliminates the initial Bernoulli trial from 248 

the precipitation modeling process, though the introduction of 𝛿 means the total number of 249 

parameters remains at three. Thus, while the conventional Gamma distribution has the 250 

property that 𝐹2,3(0) = 0 (i.e. the CDF is equal to zero at zero rainfall depth), the CDF of 251 

a CSGD has the property 𝐹2,3,A 0 = 1 − 𝑃𝑂𝑃  (see Figure 2). Scheuerer and Hamill 252 

(2015) provide details for CSGD parameter estimation based on minimization of the 253 

continuous ranked probability score, which essentially minimizes the integrated quadratic 254 

distance between the empirical and theoretical CSGD distribution functions. 255 

 256 

CDFs for “climatological CSGDs” (to distinguish from conditional CSGDs, described in 257 

Section 3.2) are shown for the 0.25° grid cells nearest to Charlotte, North Carolina and 258 

Denver, Colorado (top panel of Figure 3). These demonstrate good fit to the empirical 259 

CDFs, while highlighting the differences between locations and between TMPA and 260 

NLDAS-2. 261 

 262 

3.2 CSGD-Based Error Modeling and Correction Framework 263 

The climatological CSGD is insufficient for generating a distribution of estimated “true” 264 

precipitation values (or, equivalently, a distribution of SMPP errors) based on a given 265 

observation	𝑅C 𝑡  at time 𝑡, since the mean 𝜇 𝑡 , standard deviation 𝜎 𝑡 , and perhaps 266 

shift 𝛿 𝑡  depend on the magnitude of 𝑅C 𝑡 . Thus, we use a CSGD-based error modeling 267 

framework to reduce systematic SMPP biases, and to model and reduce SMPP random 268 
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errors. The framework was first introduced in Scheuerer and Hamill (2015) and further 269 

explored in (Báran and Nemoda (2016) for statistical post-processing of ensemble 270 

numerical precipitation forecasts. The CSGD-based approach uses a statistical regression 271 

model “trained” using a past record of contemporaneous satellite and reference 272 

observations. The regression model is then conditioned using a satellite observation for 273 

time t to generate “conditional CSGD” parameters 𝜇 𝑡 , 𝜎 𝑡 , and 𝛿(𝑡)  from the 274 

climatological CSGD parameters 𝑘, 𝜃, and 𝛿.  275 

 276 

In the simplest version, 𝜇 𝑡  increases linearly with 𝑅C 𝑡  and 𝜎 𝑡  increases 277 

proportionally to the square root of 𝜇 𝑡 . Allowing 𝛿 𝑡  to vary offers little benefit and can 278 

lead to parameter estimation difficulties (M. Scheuerer, personal comm., February 27, 279 

2017). We will refer to this version as the “linear model,” since it models conditional bias 280 

linearly with precipitation rate. It has the form  281 

µ t = µ αI + αK
	LM N
𝐑𝐒

	                                           (3) 282 

σ t = αRσ
S N
S

                                              (4) 283 

δ t = δ                                                      (5) 284 

where 𝑹U	denotes the mean of the SMPP time series. Example CDFs of conditional CSGDs 285 

are shown in the lower panel of Figure 3 for 𝑅C 𝑡  values of 2.5 and 25 mm/d for the 0.25° 286 

grid cells nearest to Charlotte, North Carolina and Denver, Colorado. These show that as 287 

𝑅C 𝑡  increases, the probability of the true precipitation being zero decreases (approaching 288 

zero for 𝑅C 𝑡 =25 mm/d) while the probability of higher true values increases. The value 289 
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of 𝜇 𝑡  will always be nonzero and greater than conditional median at time t, which will 290 

be equal to zero when the conditional POP is less than 0.5. 291 

 292 

Scheuerer and Hamill (2015) also present a more complex version that can account for 293 

nonlinearity in conditional bias. This model, from now on will be called the nonlinear 294 

model, has the form  295 

µ t = S
VW
log1p expm1(α]) αI + αK

	LM N
𝐑𝐒

                           (6) 296 

where 𝑙𝑜𝑔1𝑝 𝑥 = 𝑙𝑜𝑔	 1 + 𝑥  and 𝑒𝑥𝑝𝑚1 𝑥 = 𝑒𝑥𝑝 𝑥 − 1. 297 

The regression framework can also accommodate an arbitrary number n of additional 298 

contemporaneous covariates 𝐶] 𝑡 , 𝐶I 𝑡 , … , 𝐶g 𝑡  such as TPW, temperature, or 299 

humidity from atmospheric observations or simulations. In this case, Equation 3 expands 300 

to 301 

µ t = µ αI + αK
	LM N
𝐑𝐒

+ αh
iW N
𝐂𝟏

+ αl
i' N
𝐂𝟐

+ ⋯+ αRop
iq N
𝐂𝐧

                   (7) 302 

and 𝑪t	is the mean of the time series of the ith covariate. A similar variant of the nonlinear 303 

model (Equation 6) could be written to include covariates. The inclusion of covariates 304 

allows for additional information to be introduced to the SMPP-reference intercomparison, 305 

allowing the explanation of some of the residual (i.e. random) error. We  use the techniques 306 

described in Scheuerer and Hamill (2015) to estimate the parameters of the CSGD 307 

correction framework. 308 

 309 

The models described above are consistent with the notions that satellite errors are 310 

multiplicative (Tian et al., 2013) and that error magnitude grows with 	𝑅C 𝑡 . They bear 311 
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passing resemblance to the PUSH model of Maggioni et al. (2014), in that the conditional 312 

distribution of estimated true precipitation 𝐹2 u ,3 u ,A u  given 	𝑅C 𝑡  is assumed to be 313 

Gamma distributed, though we use the 3-parameter CSGD rather than the conventional 2-314 

parameter Gamma used to model precipitation hits in PUSH. This allows for the possibility 315 

of the estimated true precipitation to be zero, even if 𝑅C 𝑡 > 0 (i.e. a false alarm) or vice 316 

versa (missed precipitation). PUSH, in contrast, accounts for false alarms and misses using 317 

separate models, making it impossible to construct a theoretical distribution for estimated 318 

true precipitation and involves additional parameters. Like PUSH, the CSGD framework 319 

has the advantage of being parametric, which can be helpful in conditions of very low or 320 

very high precipitation rates (Gebremichael et al., 2011b; Zhang et al., 2013). 321 

4. Results and Discussion 322 

4.1 CSGD-Based Precipitation Characterization 323 

Estimates of 𝜇, 𝜎, and 𝛿 for 1998-2013 for NLDAS-2 and TMPA are compared for every 324 

grid cell over CONUS (Figure 4). All three parameters in both TMPA and NLDAS-2 325 

exhibit higher values in the eastern United States and the Pacific coastal mountains than in 326 

the western United States. This should be expected due to the higher amounts of 327 

precipitation in these parts of the country (See Figure 1). TMPA tends to overestimate 𝜇 328 

and 𝜎 and underestimate 𝛿 relative to NLDAS-2 except in the pacific coastal and Rocky 329 

Mountains. Differences in 𝜇 and 𝜎 in the western United States are lower in magnitude, 330 

though the relative differences are approximately uniform except for over mountains. 331 

Isolated or small clusters of seemingly anomalous parameter values can be seen in TMPA 332 

but not in NLDAS-2. Visual inspection shows that these are co-located with water bodies 333 
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such as lakes and reservoirs that are known to influence PMW-based precipitation 334 

estimates (Tian and Peters-Lidard, 2007).  335 

 336 

POP cannot be evaluated directly from Figure 4. Over CONUS, POP for TMPA is more 337 

uniform and significantly lower than in NLDAS-2, suggesting that the precipitation 338 

detection limits imposed by the satellite sensors or processing algorithms exert strong 339 

controls (Figure 5). The TRMM sensor package was designed to detect moderate to heavy 340 

rainfall and thus tend to underestimate light precipitation and mixed phase/falling snow. 341 

GPM can see a much broader spectrum of precipitation. As with the parameter estimates 342 

in Figure 4, anomalous isolated POP values are co-located with water bodies.  We do not 343 

explore this issue further in this study, but Maggioni et al. (2014) suggest that a minimum 344 

detection threshold of 0.25 mm/d may be a reasonable approximation in TMPA and their 345 

PUSH error model utilizes this threshold to distinguish between precipitation and non-346 

precipitation. The linear and nonlinear conditional CSGD models described in Section 3.2 347 

do allow for nonzero true precipitation even when 𝑅C 𝑡 = 0, and thus the CSGD approach 348 

need not explicitly consider detection thresholds. 349 

 350 

4.2 Error Modeling using the Conditional CSGD Framework 351 

Before showing CONUS-wide error modeling and correction results using the CSGD 352 

framework, we provide a more detailed illustration of the linear and nonlinear models and 353 

comparison with the PUSH model from Maggioni et al. (2014) for the 0.25° grid cell 354 

nearest to Charlotte, North Carolina (Figure 6). The models and data, including the 1998-355 

2013 training period and 2014 validation period, are shown on both linear (left panels) and 356 
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logarithmic scales (right panels). For both Charlotte and other locations across CONUS, 357 

TMPA tends to overestimate at higher precipitation rates. This overestimation is consistent 358 

with previous studies (AghaKouchak et al., 2011; Tian et al., 2009) and may be due to the 359 

joint effect of TMPA’s monthly bias correction and poor light precipitation detection, 360 

which would tend to introduce a high bias in precipitation magnitude (Tian et al., 2009; 361 

Wright et al., 2017). However, since NLDAS-2 does not account for gage undercatch, it 362 

almost certainly underestimates true heavy precipitation to an unknown degree. Thus, the 363 

extent to which TMPA overestimates true precipitation for large events is difficult to assess 364 

without a more detailed reference dataset. 365 

 366 

The linear and nonlinear versions of the CSGD-based error model provide good fits to the 367 

data for both the training and validation periods, and the nonlinear variant better captures 368 

the nonlinearity in conditional bias that is evident in high precipitation. PUSH greatly 369 

overestimates conditional bias for high precipitation, and no points fall outside of the lower 370 

bound of that model’s 95% spread, which is unrealistic given the relatively large sample 371 

size. In contrast, approximately 5% of points fall outside of the 95% quantile spread for 372 

the CSGD model (note that not all data points are clearly visible in Figure 6, particularly 373 

those that fall very close to either axis). 374 

 375 

We evaluate a range of conditional CSGD error model complexities; specifically, models 376 

using different versions of Equations 3, 6, and 7 to estimate 𝜇 𝑡 . CONUS-wide evaluation 377 

using root-mean-square error (RMSE) from two versions, the linear model without 378 

covariates and the nonlinear model with MERRA-2 precipitation, is shown in Figure 7. 379 
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Here and in subsequent calculations using CSGD error models, RMSE and other error 380 

metrics are computed between NLDAS-2 and the conditional CSGD median. As noted in 381 

Section 3.2, the conditional CSGD mean is always nonzero and greater than the median, 382 

which for low precipitation rates can be equal to zero. This means that neither the 383 

conditional mean nor median are ideal measures of the central tendency, but investigation 384 

of a more appropriate summary statistic is beyond the scope of this study. The linear model 385 

improves upon the TMPA dataset (i.e. reduces RMSE) except in the Rockies and Pacific 386 

coastal mountains, where performance is poor. The nonlinear model with MERRA-2 387 

precipitation offers further improvement, including in these mountainous areas. Reductions 388 

in RMSE are greatest in the northern part of the country (particularly the nonlinear model 389 

with MERRA-2 precipitation) and in the high-altitude but lower-relief portions of the 390 

Intermountain West such as the upper Rio Grande in southern Colorado and northern New 391 

Mexico and the Snake River Plain in southern Idaho.  392 

 393 

The substantial improvements provided by the nonlinear model with MERRA-2 covariates 394 

in the northeastern and northwestern parts of the country are likely attributable to the 395 

relatively higher proportion of stratiform precipitation in those regions, which is generally 396 

better estimated by atmospheric models than by satellite sensors. The more complex model 397 

also improves upon simpler versions in most of the rockies and west coast mountains. 398 

Visual inspection of results for a range of models reveal that most of this improvement 399 

stems from inclusion of MERRA-2, rather than from the nonlinear model structure (results 400 

not shown). Error reductions are associated with the identification and removal of 401 
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systematic errors and, in the case of models that include MERRA-2 covariates, some 402 

further reduction of random errors. 403 

 404 

We compute the RMSE and mean absolute error (MAE) normalized by the mean daily 405 

precipitation (henceforth refered to as NRMSE and NMAE, respectively) for each 0.25° 406 

grid cell across CONUS for a range of CSGD model configurations. This allows us to 407 

compare the relative reduction in errors achieved in various precipitation hydroclimates. 408 

Results are then summarized by computing the CONUS-wide median and interquartile 409 

range (IQR) of NRMSE and NMAE (Table 1). These nonparametric summary statistics 410 

were chosen rather than the mean and standard deviation because in arid parts of the 411 

country, normalizing by a daily mean precipitation close to zero can produce spurious 412 

results. 413 

 414 

The NRMSE and NMAE for the uncorrected TMPA dataset shows slightly increased 415 

accuracy for the validation period, relative to the training period, possibly associated with 416 

improvements in the number and quality of satellite sensors over the lifetime of TMPA. In 417 

contrast, the error statistics for the CSGD models tend be unchanged or slightly worse for 418 

the 2014 validation period, though in all cases the validation performance is within 7% of 419 

the reference period in terms of RMSE and within 5% in terms of MAE, suggesting 420 

relatively robust model performance.  421 

 422 

The linear (nonlinear) model improved median NRMSE by 20% (22%) and median NMAE 423 

by 17% (19%) for the training period, with similar performance in the validation period. 424 
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MERRA-2 covariates improved upon this “baseline” CSGD model performance. The 425 

inclusion of MERRA-2 precipitation offers robust improvements to both NRMSE and 426 

NMAE (32% and 33%, respectively in the case of the nonlinear version). Inclusion of 427 

MERRA-2 TPW alone (i.e. without MERRA-2 precipitation) offers very little 428 

improvement in both the linear and nonlinear models. When both MERRA-2 TPW and 429 

precipitation are included, neither linear nor nonlinear models show much improvement 430 

over when only the precipitation covariate is included. This implies that precipitation from 431 

MERRA-2 is a much stronger predictor of true precipitation than TPW. It also suggests 432 

that MERRA-2 precipitation and TPW are highly correlated, which is unsurprising. 433 

 434 

A linear CSGD error model was tested in which the size of the TMPA and NLDAS-2 435 

samples at each grid cell were expanded by concatenating the data from the eight adjacent 436 

grid cells for model fitting. Referred to in Table 1 as “linear with spatial pooling,” this 437 

model produced similar results to the linear model fitted only to data from individual grid 438 

cells (“linear” in Table 1). This has several implications. In complex terrain or near water 439 

bodies, precipitation can vary over relatively short distances. In such cases, spatial pooling 440 

may create an enlarged sample that does not properly represent precipitation statistics in 441 

the grid cell in question. Visual inspection of RMSE maps show similar performance 442 

between pooled and unpooled linear CSGD models in the eastern portion of the country, 443 

and lower performance using pooling in the mountain west, consistent with this intuition 444 

(results not shown). In addition, the value added through spatial pooling is inherently 445 

limited if there is substantial spatial correlation in the precipitation estimates and errors 446 

between adjacent grid cells. The similar performance between pooled and unpooled models 447 
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in less varied terrain also implies that the model fitting procedure is relatively robust to 448 

small samples. 449 

 450 

We evaluate the relationships between errors in TMPA, as a function of correlation 451 

between TMPA and NLDAS-2, before and after applying a nonlinear CSGD model with 452 

MERRA-2 precipitation (Figure 8). The influence of land surface elevation, as a proxy for 453 

topographic relief, is also evaluated, since this impact is somewhat difficult to assess in 454 

Figure 7. Both the absolute values and the variability in NRMSE and NMAE are relatively 455 

low for locations with high correlation, while the variability (though not the central 456 

tendency) in these statistics increases for locations with lower correlation and there is a 457 

relatively weak inverse relationship between error magnitude and correlation between the 458 

SMPP and reference. Neither correlation nor elevation appear to be the primary controls 459 

on NRMSE or NMAE, even though correlation values for higher-elevation locations tend 460 

to be relatively low. It also appears from Figure 8 that similar reductions in NRMSE and 461 

NMAE can be achieved regardless of correlation or land surface elevation. Qualitatively 462 

similar results were produced with the simpler linear model (not shown).  463 

 464 

Like NRMSE and NMAE, correlation between the uncorrected TMPA and NLDAS-2 is 465 

slightly higher in the validation period than the training period, again likely associated with 466 

improvements in the quality and number of sensors. Interestingly, linear and nonparametric 467 

correlations between corrected SMPP timeseries and NLDAS-2 reduce somewhat when 468 

TMPA is fed through a linear CSGD model without covariates, and remain relatively 469 

unchanged when a nonlinear model is used instead (Table 2). This may be due to the 470 
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limitations of using either the CSGD mean or median and due to the implicit bias 471 

adjustment in the CSGD framework. When MERRA-2 precipitation is included as a 472 

covariate, however, correlation between the corrected SMPP timeseries and NLDAS-2 473 

increases. This highlights the ability of MERRA-2 covariates (particularly precipitation) to 474 

reduce random errors in TMPA. 475 

 476 

We also examined the realtime version (TMPA-RT) with several CSGD models (Table 3). 477 

NRMSE and NMAE in the original TMPA-RT dataset are 14% larger in terms of NRMSE 478 

and 8% larger in terms of NMAE than the research version analyzed previously. Results 479 

are qualitatively similar to Table 1, with all CSGD models showing improvement over the 480 

uncorrected TMPA-RT dataset, and with the largest improvements coming from the 481 

nonlinear model with MERRA-2 precipitation. Likewise, error statistics are generally 482 

comparable for the 2014 validation period, showing minimal loss of performance as 483 

compared to the training period. The degree of error reduction achieved by the CSGD 484 

models is greater using TMPA-RT than TMPA. For example, relative to the uncorrected 485 

TMPA-RT, the linear CSGD model reduced NRMSE (NMAE) by 25% (20%), while the 486 

same model reduced error for the research version by 20% (17%). Reduction in NRMSE 487 

(NMAE) relative to the uncorrected TMPA-RT was as high as 39% (37%) for the nonlinear 488 

CSGD with MERRA-2 precipitation. These results are consistent with the notion that error 489 

models identify and remove systematic biases, since Maggioni et al. (2016) reported higher 490 

systematic errors in TMPA-RT than the research version. 491 

 492 

4.3 Parameter Sensitivity 493 
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The results for the validation period shown in Tables 1 and 2 provide an initial indication 494 

that the CSGD framework can be applied outside of the training period. To investigate this 495 

issue further, we re-estimate the CSGD parameters for NLDAS-2 and TMPA, as well as 496 

the regression parameters for linear version of the conditional CSGD model for each year 497 

individually from 1998-2013 and for successively longer time periods (i.e. 1998-1999, 498 

1998-2000, etc.) for the grid cell nearest to Charlotte, North Carolina (Figure 9). While 499 

parameters vary somewhat from year to year, estimates using longer time periods converge 500 

to relatively stable values after several years. Exceptions are the slight downward trend in 501 

αI  and upward trend in αK . It is well known that the spatial and temporal statistical 502 

consistency of precipitation datasets vary according to input data availability, such as the 503 

number of rain gages (Hamlet and Lettenmaier, 2005) or the quality and type of satellite 504 

sensor (Cho and Chun, 2008). The trends in αI and αK are consistent with improvement in 505 

precipitation estimation in TMPA (i.e. reduction in the weight given to the regression 506 

intercept and increase in weight given to 𝑅C). Parameters for the nonlinear model and for 507 

other locations are similarly stable over time (results not shown).  508 

 509 

These results suggest that the continuous ranked probability score-based parameter 510 

estimation procedure for the climatological CSGD and the conditional CSGD regression 511 

framework is relatively efficient with respect to data requirements, and that several years 512 

of coincident reference data may be sufficient. It would be worthwhile to evaluate this issue 513 

using error metrics such as RMSE or MAE. We leave this as a topic of future work, though 514 

it is worth noting that (Scheuerer and Hamill, 2015) found relatively poor conditional 515 
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CSGD performance with a one year training sample but good performance with modest 516 

increases in training record length.   517 

5. Summary and Discussion 518 

Using the censored shifted gamma distribution (CSGD), we characterize the climatology 519 

of daily precipitation over CONUS of TMPA, a satellite multisensor precipitation product 520 

(SMPP) and NLDAS-2, a reference (i.e. rain gage-based) dataset. We also use a conditional 521 

CSGD error modeling framework to quantify and reduce errors in TMPA. The CSGD 522 

describes both precipitation occurrence and magnitude, and reveals significant differences 523 

between TMPA and NLDAS-2 including poor satellite-based estimation over inland water 524 

bodies and mountainous regions. The CSGD-based error modeling framework considers 525 

errors both in the detection and magnitude of precipitation and can model systematic bias 526 

either as a linear or nonlinear function of precipitation rate.  Both versions perform better 527 

than an existing error model from Maggioni et al. (2014) over a wide range of precipitation 528 

magnitudes for daily precipitation.  529 

 530 

The framework suffers most in areas of high topographic relief (though not necessarily in 531 

areas of high elevation). Error reduction at a specific location depends on the relative 532 

balance of systematic and random error in the SMPP at that location. Preliminary analyses 533 

demonstrate that parameter estimation of both the CSGD and the CSGD-based error 534 

framework are relatively insensitive to record length for periods of record longer than 535 

several years. 536 

 537 



 25 

In addition, we show that errors in TMPA can be reduced by incorporating covariates from 538 

MERRA-2 atmospheric reanalysis, despite its relatively coarse resolution. This is the first 539 

study that we are aware of in which the potential benefits of merging numerical weather 540 

prediction and SMPP is explored quantitatively. Precipitation from MERRA-2 offers 541 

robust increases in performance, particularly in mountainous areas, while MERRA-2 542 

precipitable water provides little improvement. The improvements offered by MERRA-2 543 

appear to be due to the better performance of numerical models relative to satellite-based 544 

instruments, in resolving stratiform precipitation. Other numerical weather models that 545 

have higher resolution or that assimilate more independent observations would likely 546 

provide additional improvement.  547 

 548 

It should be emphasized that precipitation error models can only isolate and thus remove 549 

systematic errors. The errors remaining after the removal of systematic bias, i.e. the random 550 

errors, can be described statistically but not reduced or eliminated. The variability in these 551 

residuals can only be explained via the inclusion of additional information. Except for 552 

models that include MERRA-2 covariates, therefore, the error reductions shown 553 

throughout Section 4.2 stem solely from the identification and removal of systematic 554 

errors. MERRA-2 covariates can explain some amount of residual (i.e. random) error, as 555 

evidenced by the further reductions in errors and increased correlations.  556 

 557 

The error reduction achieved in this study is generally consistent with the levels of 558 

systematic error found over the eastern United States at the same spatial and temporal 559 

resolution by Maggioni et al. (2016), though more work is needed to reconcile 560 
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discrepancies between the degree of systematic bias shown here and shown by those 561 

authors in the mountain west. Also consistent with (Maggioni et al., 2016), improvements 562 

in TMPA-RT were relatively greater than for the gage-corrected non-realtime version, 563 

suggesting that the CSGD approach has particular advantages for near-realtime 564 

applications. The CSGD approach, coupled with realtime numerical weather prediction 565 

estimates such as those generated using NASA’s GEOS-5 (Rienecker et al., 2008), offer a 566 

pathway to improve the accuracy of near-realtime SMPP, and for parameterizing remaining 567 

random errors. 568 

 569 

Certain relevant issues were not explored in this study. Maggioni et al. (2014) concluded 570 

that seasonally varying model parameters offered no major advantage in their error model, 571 

and our initial investigations into seasonality, which are omitted here in the interest of 572 

brevity, confirm this. Errors in the NLDAS-2 reference data, including due to rain gage 573 

undercatch, were not considered and can be significant, particularly in the cold season and 574 

in steep terrain.  575 

 576 

Many applications, such as hydrologic modeling, can require subdaily precipitation inputs. 577 

SMPP errors in magnitude grow with increasing resolution. The autocorrelation of daily 578 

precipitation is relatively low, but increases as temporal resolution becomes finer. Thus, 579 

generating a realistic high-resolution timeseries of precipitation using the CSGD approach 580 

or other error models requires consideration of this autocorrelation. The same is true for 581 

generating spatially-correlated precipitation fields. 582 

 583 
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One key challenge with the CSGD framework, and precipitation error modeling more 584 

generally, is transferability to regions that lack reference data. This issue requires 585 

significant further effort, but several previous studies have shown promise (Gebregiorgis 586 

and Hossain, 2014, 2013). The CSGD framework would be strong candidate for such 587 

efforts, due to the relatively simple structure, robust performance, and the ability to include 588 

relevant atmospheric variables from numerical weather prediction, which may potentially 589 

be even more useful in data-limited settings. Resolving such issues would constitute a 590 

major step toward quantifying and reducing errors in satellite precipitation estimates and 591 

helping users to better understand the implications of remaining irreducible random errors.    592 
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 792 
Table 1: Median of CONUS-wide NRMSE and NMAE for TMPA vs. NLDAS-2 and for 793 

a range of CSGD error models. Values in parentheses give the interquartile range (IQR; 794 

i.e, 25th-75th percentiles). The models are fit to the 1998-2013 time period, while 2014 is 795 

reserved for validation.  796 

 NRMSE [-] NMAE [-] 
CSGD Error Model 1998-2013  2014  1998-2013  2014  

Uncorrected TMPA 2.73 
(2.27, 3.25) 

2.54 
(2.12, 3.14) 

0.98 
(0.87, 1.11) 

0.92 
(0.81, 1.05) 

Linear 2.19 
(1.86, 2.74) 

2.25 
(1.89, 2.84) 

0.81 
(0.74, 0.89) 

0.80 
(0.73, 0.89) 

Linear with spatial 
pooling 

2.20 
(1.87, 2.73) 

2.26 
(1.89, 2.85) 

0.81 
(0.74, 0.89) 

0.80 
(0.73, 0.89) 

Nonlinear 2.14 
(1.82, 2.70) 

2.22 
(1.84, 2.83) 

0.79 
(0.72, 0.88) 

0.79 
(0.72, 0.88) 

Linear with MERRA-
2 precipitation 

1.88 
(1.55, 2.36) 

1.99 
(1.60, 2.58) 

0.67 
(0.60, 0.75) 

0.69 
(0.61, 0.78) 

Linear with MERRA-
2 TPW 

2.17 
(1.83, 2.71) 

2.22 
(1.85, 2.82) 

0.79 
(0.72, 0.88) 

0.79 
(0.71, 0.88) 

Linear with MERRA-
2 precipitation and 

TPW 

1.87 
(1.54, 2.36) 

1.98 
(1.59, 2.56) 

0.67 
(0.60, 0.75) 

0.68 
(0.61, 0.78) 

Nonlinear with 
MERRA-2 

precipitation 

1.85 
(1.53, 2.33) 

1.97 
(1.58, 2.55) 

0.66 
(0.59, 0.74) 

0.69 
(0.61, 0.77) 

Nonlinear with 
MERRA-2 TPW 

2.13 
(1.80, 2.69) 

2.21 
(1.82, 2.80) 

0.78 
(0.71, 0.87) 

0.78 
(0.71, 0.87) 

Nonlinear with 
MERRA-2 

precipitation and 
TPW 

1.84 
(1.52, 2.33) 

1.97 
(1.57, 2.55) 

0.66 
(0.58, 0.74) 

0.69 
(0.61, 0.78) 
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Table 2: CONUS-wide median and IQR for Pearson and Spearman correlation coefficients 803 

for TMPA vs. NLDAS-2 and for a range of CSGD error models. The models are fit to the 804 

1998-2013 period, while 2014 is reserved for validation. 805 

 Pearson Correlation Spearman Correlation 
CSGD Error Model 1998-2013  2014  1998-2013  2014  

Uncorrected TMPA 0.65 
(0.53, 0.71) 

0.67 
(0.56, 0.74) 

0.53 
(0.44, 0.62) 

0.58 
(0.49, 0.65) 

Linear 0.63 
(0.51, 0.69) 

0.65 
(0.53, 0.73) 

0.52 
(0.43, 0.60) 

0.56 
(0.46, 0.63) 

Nonlinear 0.65 
(0.53, 0.71) 

0.67  
(0.56, 0.74) 

0.53 
(0.44, 0.61) 

0.57 
(0.47, 0.63) 

Linear with MERRA-
2 precipitation 

0.74 
(0.68, 0.79) 

0.75 
(0.67, 0.81) 

0.70 
(0.62, 0.75) 

0.72 
(0.65, 0.78) 

Nonlinear with 
MERRA-2 

precipitation 

0.75 
(0.70, 0.80) 

0.76 
(0.68, 0.81) 

0.71 
(0.64, 0.76) 

0.73 
(0.66, 0.78) 

 806 

 807 

Table 3: As per Table 1, but using TMPA-RT and with a reduced set of CSGD error 808 

models. 809 

 NRMSE [-] NMAE [-] 
CSGD Error Model 1998-2013  2014  1998-2013  2014  
Uncorrected TMPA-

RT 
3.10  

(2.29, 4.24) 
3.08 

(2.37, 4.09) 
1.06 

(0.87, 1.38) 
1.05 

(0.90, 1.29) 

Linear 2.32 
(1.93, 3.00) 

2.38 
(1.96, 3.06) 

0.84 
(0.76, 0.94) 

0.84 
(076, 0.93) 

Nonlinear 2.25 
(1.87, 2.94) 

2.32 
(1.89, 3.01) 

0.82 
(0.73, 0.92) 

0.83 
(0.74, 0.92) 

Linear with MERRA-
2 precipitation 

1.91 
(1.56, 2.49) 

2.05 
(1.63, 2.68) 

0.68 
(0.60, 0.78) 

0.71 
(0.62, 0.81) 

Nonlinear with 
MERRA-2 

precipitation 

1.88 
(1.55, 2.44) 

2.01 
(1.60, 2.64) 

0.67 
(0.59, 0.76) 

0.70 
(0.62, 0.80) 
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 847 

Figure 1: CONUS study area land surface elevation (top) and mean annual precipitation 848 

from NLDAS-2 (bottom). 849 

 850 

Figure 2: CDF for an arbitrary CSGD distribution. Note that the CDF fully describes both 851 

the probability of zero and non-zero precipitation, as well as precipitation intensity. 852 

 853 
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 854 

Figure 3: Top panel—empirical CDFs (markers) and CSGD theoretical CDFs (lines) for 855 

NLDAS-2 and TMPA for Charlotte, North Carolina and Denver, Colorado. A log scale is 856 

used for rainfall to improve readability. Bottom panel—conditional CSGD theoretical 857 

CDFs generated using the linear model described in Section 3 for 	𝑅C 𝑡 = 2.5 and 25 mm/d. 858 

 859 
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 860 

Figure 4: Climatological CSGD parameters 𝜇 , 𝜎 , and 𝛿  for the 1998-2013 period for 861 

NLDAS-2 (left), TMPA (middle), and the difference (right). 862 
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 866 
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 868 

Figure 5: Probability of precipitation for the 1998-2013 period using NLDAS-2 (top) and 869 

TMPA (bottom). 870 
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 871 

Figure 6: Linear (top panels) and nonlinear (bottom panels) conditional CSGD models for 872 

the 0.25° grid cell nearest to Charlotte, North Carolina compared with observations and 873 

PUSH model for 1998-2013 training period (grey dots) and 2014 validation period (orange 874 

dots). The sample data and models are shown in the left and right panels but the axes are 875 

linear (left panels) and logarithmic (right panels). 876 
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 879 

Figure 7: Top and middle panels—all-season RMSE for 1998-2013, computed relative to 880 

NLDAS-2 reference: (a) research version of TMPA; (b) linear model; (c) nonlinear model 881 

with MERRA-2 precipitation. Bottom panels—percentage change in RMSE relative to 882 

TMPA results in panel (a): (d) linear model; (e) nonlinear model with MERRA-2 883 

precipitation. Inset values in parentheses are the means of all grid cells in CONUS. 884 
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 885 

Figure 8: NRMSE (top panels) and NMAE (bottom panels) as a function of Spearman 886 

correlation coefficient for every 0.25° in the CONUS study domain. Left panels show 887 

results for the TMPA dataset for 1998-2013; right panels show results for the nonlinear 888 

CSGD model with MERRA-2 precipitation. Point colors indicate average land surface 889 

elevation in the grid cell. 890 
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 897 

Figure 9: Parameter estimates as a function of precipitation record length from 1998-2013 898 

for the 0.25° grid cell nearest to Charlotte, North Carolina. Top: CSGD for NLDAS-2; 899 

middle: CSGD for TMPA. Bottom: regression parameters for linear model. Markers 900 

indicate parameter estimates based on that individual year of data, while the lines indicate 901 

parameter estimates based on data from 1998 to that year.  902 


